
APPENDIX A

Chapter commentaries

The following commentaries provide some intellectual and historical context 
for the ideas introduced in the story, developing the concepts a little further 
and indicating how they fit into the big picture.

Fuller versions of (some of) these commentaries are freely available from 
the book’s website. Many points that are only lightly touched on or hinted at  
here are explored in more depth in these longer commentaries. The website 
also offers a number of supplements dedicated to specific topics — some of 
these are referred to below.

Chapter 1: The noble art of proof

We’ve begun our story with a proof of a classic result from number theory:  
There are infinitely many prime numbers. This was essentially the proof given 
by the Greek mathematician Euclid of Alexandria (c. 325-265 BCE) in his 
monumental treatise, the Elements. The proof itself might well have been the 
work of some earlier mathematician, but it’s traditionally known as ‘Euclid’s 
proof’, and in the story I’ve taken the liberty of ascribing it to him. 

This book isn’t really about number theory. It’s really about a subject called 
mathematical logic, and a bunch of questions that lie on the border between 
mathematics and philosophy. But in order to approach these questions — to 
set the scene — it’s as well to start by looking at some actual examples of  
mathematics. And number theory serves this purpose very well.

What is so special about mathematics? What is it that distinguishes it from 
other subjects? Various answers to this question might be given, but certainly 
one distinctive feature of mathematics is the notion of rigorous, logical proof.1

What is a mathematical proof? Actually, a completely precise answer to this 
question isn’t so easy to give, and that’s one of the main things this book will 
be  about.  But  the  basic  idea  is  clear  enough:  a  proof  is  just  a  logically 
watertight  argument  that  shows,  beyond  all  possible  doubt,  why  some 
mathematical statement is true. Statements that have been proved in this way 

1  The focus of this book is mainly on what is often called  pure mathematics — broadly 
speaking,  mathematics  studied for  its  own sake rather  than with a  view to applications — 
though applications will often be touched on in our discussions.
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are known as theorems — they are represented in our story by the medallions 
which  our  heroines  will  spend  much  of  their  time  searching  for.  Euclid’s 
theorem on the infinitude of the primes is a classic example.

So  a  proof  in  mathematics  is  something  quite  different  from  a  mere 
accumulation of data that might be seen as ‘evidence’ for some claim. For 
example, there’s a famous conjecture made by Christian Goldbach in 1742 
which says that every even number greater than 2 is the sum of two prime 
numbers (e.g. 42 = 19 + 23). This has been checked by computer for all even 
numbers up to 4,000,000,000,000,000,000, but that doesn’t prove that it holds 
for all even numbers — and indeed, the challenge of finding a rigorous proof 
of  Goldbach’s  conjecture  still  remains  open.  There  are  even  some 
mathematical statements that appear to hold for all numbers up to 10300, and 
yet are known to fail for some larger numbers. So mathematicians as a breed 
tend to be highly mistrustful of mere cumulative evidence.

Mathematics  as  a  science  of  measurement  and  calculation  had  been 
extensively developed in pre-Greek times by the Babylonians, the Chinese, 
the Indians and others. But it was seemingly the Greek philosopher Thales of 
Miletus  (c.  624-545  BCE)  who  was  the  first  to  hit  on  the  principle  of 
mathematical proof: the idea that truths about all numbers, or all triangles, or 
whatever, could be securely established by means of a sequence of logical 
steps. In effect, what this amounted to was a completely new way of knowing 
things: a milestone in the history of knowledge whose importance is hard to 
overestimate. By Euclid’s time, this idea had developed into a methodology of 
deducing a whole mathematical theory from an explicitly stated list of axioms 
— initial  assumptions  that  were  seen  as  so  self-evident  that  they did  not 
themselves require justification.

One cannot but be impressed by how well the mathematics of antiquity has 
lasted. Ancient Greek ideas on the composition of matter or the movements of 
the planets were discarded long ago, but their mathematics has endured (even 
if we’d now see their discoveries in geometry in a somewhat different light). 
Why is  this?  One  obvious  answer  suggests  itself:  knowledge  acquired  by 
mathematical proof is by its nature certain, and therefore indestructible.

So  the  idea  of  mathematical  proof  is  closely  linked  to  the  idea  that 
mathematics offers some sort of ‘ideal certainty’ of a kind not available in 
other  disciplines.  This  is  an  enormously potent  idea:  it  has  gripped many 
minds down the centuries, and it is surely a part of what draws many people to 
mathematics.

How certain is ‘certain’? Can we really say, as some thinkers have been 
eager to claim, that mathematics offers nothing short of absolute certainty?

One might think of ways in which this bold claim might need at least some 
qualification. Some of these will be explored in the course of this book, and a 
few  others  are  discussed  in  the  extended  commentary.  Nonetheless,  even 
allowing for these caveats, there still remains a basic sense that mathematics 
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— or at least some of it  — is in some way peculiarly reliable and certain. In 
number  theory,  for  instance,  we  find  a  significant  body  of  crystal-clear 
knowledge that is not, in fact, disputed or doubted by anyone at all. There may 
be some sophisticated people around who like to tell us that ‘mathematical 
certainty’ is  an obsolete and discredited notion, but  in practice, even these 
people find a proof in number theory completely compelling when they see 
one. For example, it was proved by Leonhard Euler around 1760 that there are 
no positive Whole numbers  x,  y,  z such that  x3 +  y3 =  z3.  And no one who 
understands the proof thinks there’s the slightest point in looking for any such 
numbers  — because we all  seem to agree,  at  bottom,  that  a mathematical 
theorem is something it would be irrational to deny. 

Although this notion of mathematical certainty may on one level seem quite 
clear and familiar, it gives rise to some perplexing philosophical puzzles. How 
is it, exactly, that our minds are able to acquire this ‘certain’ knowledge, with 
little or no reference to the outside world? What goes on inside our heads — 
biologically speaking — when we ‘see’ that  some mathematical  statement 
must  be  true?  And  what  is  it  about  this  process  that  makes  the  resulting 
knowledge so distinctively ‘certain’?

Such  questions  may  seem  particularly  puzzling  when  we  consider 
mathematical statements that involve the notion of infinity in some way. How 
is it that our (presumably) finite minds are able to acquire knowledge of the 
infinite?  What  process  within  our  brains  could  possibly  deliver  reliable 
knowledge about infinity?

Could a digital computer be programmed to ‘see’ mathematical truths with 
complete certainty in the way that we can? If so, could the computer likewise 
be programmed to ‘see’ things that we can see to be false?

These are far from easy questions, and as we shall see later in this book,  
different  thinkers  have  responded to  them in radically different  ways.  But 
lurking in the background to these puzzles, there is perhaps an even more 
fundamental conundrum. What  is mathematical truth? We evidently possess 
mathematical knowledge of some kind, but what exactly is it knowledge of? 
What  does  it  mean to  say  there  are  infinitely  many  primes?  To  put  the 
question very crudely: Where are there infinitely many primes? 

Again, as we shall see, there is a whole spectrum of possible ways of either 
addressing  or  dismissing  such  questions.  But  here  we’ll  make  a  start  by 
touching  on  one  of  the  oldest  of  these:  the  view known as  platonism,  so 
named after the philosopher Plato who flourished in Athens around 360 BCE. 

The essence of mathematical platonism (or  Platonism: take your pick) is 
simply  the  idea  that  there  is  some  kind  of  objective  truth  or  reality, 
independent  of  ourselves,  to  which  mathematical  statements  refer.  Just  as 
there is (we commonly suppose) a physical world outside ourselves to which 
we refer when we speak of trees and elephants, so there is some realm of 
mathematical reality outside ourselves to which we refer when we speak of 
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prime numbers or perfect circles. This platonic realm of reality is typically 
held to be abstract, non-physical, timeless and immutable.2

The idea of platonism sharply divides people. There are many top-flying 
mathematicians today to whom the platonist view seems perfectly natural and 
reasonable, and others to whom the very idea of such a ‘mathematical world’ 
seems ridiculous, fanciful, unbelievable. So what exactly is going on here? Do 
the platonists know something the anti-platonists don’t, or vice versa? Or are 
they  somehow  talking  at  cross-purposes  and  misconstruing  each  other’s 
positions? Is the entire debate ultimately a meaningless one arising from some 
confusion of language? Are there different degrees or levels of platonism that 
need  to  be  distinguished?  If  we  reject  platonism,  what  other  view  of 
mathematical truth might we adopt in its place?

Again, these are not easy questions. We shall  try to unpack them as we 
proceed,  and consider  arguments  from a range of  perspectives.  But  in  the 
meantime,  we  can  note  one  thing  that  platonists  and  anti-platonists  alike 
largely agree on: namely, that doing mathematics certainly feels like exploring 
a world that’s already out there — a world we ‘discover’ rather than one we 
‘invent’. Whether that’s really what’s going on is of course another matter. But 
the deeper and more fundamental the mathematics, the more compelling this  
impression of discovery seems to be. 

In the story, I’ve tried to capture something of this sense of exploration and 
discovery using the metaphor of a huge fantasy castle. It might seem that this 
metaphor leans towards a platonistic view of mathematical reality, but that is 
not really the intention. The purpose is simply to set the scene by portraying 
something  of  what  mathematics  feels  like from the  inside.  What  the  real 
nature of mathematics might be is something I invite you to reflect on as the 
story unfolds.

Chapter 2: Beads and bracelets

In Chapter 1, we introduced the notion of theorem and proof by looking at 
just a single example. In this chapter, we shall look at another example, that of  
Fermat’s little theorem (not to be confused with his celebrated last theorem — 
an incomparably harder result which was finally established by Andrew Wiles 
in  1994).  But  we  shall  also  start  to  glimpse  how  theorems  and  other 
ingredients can combine to form something much bigger.

The ‘little theorem’ was stated by Fermat in a letter to a friend in 1640,  
though the first published proof was given by Euler in 1736. Many proofs are 

2  The term ‘platonism’ is popular among mathematicians, while philosophers often use the 
broad  term ‘realism’ for  any view that  sees  mathematics  as  dealing with  objective,  mind-
independent truth. Some scholars reserve ‘platonism’ for a position more strictly in line with 
Plato’s specific ideas.


